Computational Acceleration of Projection Algorithms for the Linear Best Approximation Problem
نویسنده
چکیده
This is an experimental computational account of projection algorithms for the linear best approximation problem. We focus on the sequential and simultaneous versions of Dykstra’s algorithm and the Halpern-Lions-Wittmann-Bauschke algorithm for the best approximation problem from a point to the intersection of closed convex sets in the Euclidean space. These algorithms employ different iterative approaches to reach the same goal but no mathematical connection has yet been found between their algorithmic schemes. We compare these algorithms on linear best approximation test problems that we generate so that the solution will be known a priori and enable us to assess the relative computational merits of these algorithms. For the simultaneous versions we present a new component-averaging variant that substantially accelerates their initial behavior for sparse systems.
منابع مشابه
Accuracy improvement of Best Scanline Search Algorithms for Object to Image Transformation of Linear Pushbroom Imagery
Unlike the frame type images, back-projection of ground points onto the 2D image space is not a straightforward process for the linear pushbroom imagery. In this type of images, best scanline search problem complicates image processing using Collinearity equation from computational point of view in order to achieve reliable exterior orientation parameters. In recent years, new best scanline sea...
متن کاملEfficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملOn Accelerated Hard Thresholding Methods for Sparse Approximation
We propose and analyze acceleration schemes for hard thresholding methods with applications to sparse approximation in linear inverse systems. Our acceleration schemes fuse combinatorial, sparse projection algorithms with convex optimization algebra to provide computationally efficient and robust sparse recovery methods. We compare and contrast the (dis)advantages of the proposed schemes with t...
متن کاملAgent-based approach for cooperative scheduling
This paper studies the multi-factory production (MFP) network scheduling problem where a number of different individual factories join together to form a MFP network, in which these factories can operate more economically than operating individually. However, in such network which known as virtual production network with self-interested factories with transportation times, each individual facto...
متن کاملEvaluation of Bi-objective Scheduling Problems by FDH, Distance and Triangle Methods
In this paper, two methods named distance and triangle methods are extended to evaluate the quality of approximation of the Pareto set from solving bi-objective problems. In order to use evaluation methods, a bi-objective problem is needed to define. It is considered the problem of scheduling jobs in a hybrid flow shop environment with sequence-dependent setup times and the objectives of minimi...
متن کامل